
LIFT
Whitepaper v1.1.0

The platform token for the LIFTOFF.eth token launchpad
Lid Protocol Team, 2021.

1. Overview

LIFTOFF.eth provides the most advanced token sale buyer protections to date. These 
protections include required informational disclosures, smart contract token distribution, automated 
locked liquidity, and limited crash insurance. LIFT adds the final missing a critical component: 
community. Successful token sales require an active and vigilant community who are rewarded for 
successful launches. The LIFT platform token aims to spark community through rewards, 
memberships, and voice.

The LIFT token will begin with several core benefits for whitelisted LIFT members. First, every 
token sale will airdrop 3% of supply proportionately to members. Second, members gain access to 
private chat rooms and channels for reviewing and discussing LIFTOFF sales. Third, members publicly 
verify LIFTOFF launches as a signal to the wider DeFi community. Combined these benefits encourage 
and support an active community. The LIFT sale, hosted on LIFTOFF, will be open to the public with 
only unfriendly jurisdiction limitations. After launch, the token will be freely tradeable on Uniswap.

LIFT membership has tighter restrictions than most other platform tokens. To join, members 
must hold 1 LIFT, verify ownership of a discord account, and receive whitelisting from the Lid Protocol 
team at its discretion. Members must maintain a 1 LIFT balance at all times. Whitelisting and balance 
maintenance requirements allow the removal of members who take advantage of the community. 
These misbehaviors include but are not limited to spreading disinformation, exploiting benefits, 
running unapproved bots, or otherwise causing measurable harm to the LIFT community. 

2. Background

Lid Protocol’s first platform, Lid Bonding Curve Sales, successfully sold LID tokens and locked 
liquidity. However, the complexity of bonding curve technology confused most users. Lid Simplified 
superseded the bonding curve platform. Lid Simplified had a lifespan of 6 months with dozens of 
successful sales. Lid Simplified prevented Uniswap liquidity removals through the automated locking 
of liquidity in a fully decentralized, trustless fashioned. However, Lid Simplified was vulnerable to “Soft

1



Exit” attacks where the project team would delete social media channels and websites immediately 
after a sale concluded.

LIFTOFF.eth retains all of Lid Simplified’s advantages while adding protections against Soft Exit 
attacks. Just like Lid Simplified, LIFTOFF provides automated liquidity locking, ETH distribution, and 
token distribution. However, it has several fundamental improvements.

First, LIFTOFF does not allocate the project developers any tokens. Fair allocation, meaning 
100% of tokens to liquidity and users, removes the volatility from insider sales. To acquire tokens, 
project developers must allocate some amount of their ETH payment to purchasing tokens. This 
provides provides price stability and reduces volatility risks.

Second, LIFTOFF provides crash insurance for 10 weeks. During the first week crash insurance 
covers 100% of the available tokens. Excess insurance redemptions unwind the sale, preventing the 
project developers from receiving any payment. The crash insurance gradually covers a lower 
percentage of supply of the next 10 weeks, and redemptions are taken from the project developer’s 
ETH. Thus Crash Insurance is fully secured by the sale itself. As the project developer pay is 10% per 
week for 10 weeks, the project developer is incentive to continue active involvement. Time delays also
create a high effort barrier, albeit not perfect, to scammers. 

Third, LIFTOFF utilizes XLOCK technology with XETH to increases the ETH allocation to 110%. 
XLOCK, forked from ULOCK and ROOTKIT, frees up ETH from locked liquidity. This 10% boost increases 
liquidity and allows 110% of the total ETH raise to be allocated instead of 100%. However, since the 
default Uniswap UI does not recognize XETH as a routing pair, traders must use the Penguinswap 
frontend instead.

The LIFTOFF platform is already alive and active on the Ethereum Mainnet. Once the LIFT token
is released, the rewards will begin immediately. While future rewards, benefits, and upgrades may be 
developed, buyers of the LIFT token should purchase with the understanding that the platform is fully 
developed, operational, and complete as is.

3. The LIFTOFF platform

The LIFTOFF platform is a fully decentralized, autonomous, self service platform. By fully 
decentralized, we mean the LIFTOFF platform cannot be censored or managed by any centralized 
authority. The domain LIFTOFF.eth is hosted on ENS, a fully decentralized domain service. The dapp 
files are hosted on IPFS, a decentralized hypermedia protocol. LIFTOFF’s smart contracts are deployed 
on the Ethereum Mainnet as well as Ropsten.

The Lid Protocol Team has the rights to update the dapp, point the ENS domains to new IPFS 
sites, and upgrade the LIFTOFF smart contracts. However, the normal day-to-day operation of LIFTOFF 
does not require any efforts by the Lid Protocol Team.

New launches can be created by any dev at any time by just filling out a form and sending an 
Ethereum transaction. Accordingly, users of the LIFTOFF platform need to conduct their own research 
and exercise caution in which sales they participate in. To aid this process, the Liftoff launchpad has 
both required and optional fields which project devs fill to provide information about their token sale. 
Buyers of tokens on the LIFTOFF platform are then able to exercise discretion both from the 
information given and request explanation from the project devs for missing information. Tokens are 
encouraged to already have a live, working dapp as one of the fields provided in the launchpad. Lack 
of a live, working dapp for a token sale should act as a strong warning sign to LIFTOFF users as all 
2



LIFTOFF tokens present themselves as utility tokens, not securities. Investigation of deceit around the 
nature of a token may create a strong warning sign not to purchase a particular token.

The LIFTOFF platform is restricted in several countries, particularly the USA. As of 2021 there 
remains substantial regulatory uncertainty around token sales to US citizens, residents and 
representatives. The LIFTOFF platform is unable to geoblock IP addresses. The dapp is delivered via 
IPFS and the smart contracts run on Ethereum with no backend services, so no central server can be 
configured to block IP addresses. However, the LIFTOFF platform reminds token sale buyers that they 
must be in a crypto friendly jurisdiction to use the dapp. Each time the Ignite button on a dapp is 
clicked, before the transaction is sent the prospective token buyer is required to verify they are not in 
the USA or other unfriendly jurisdiction.

Every launch on LIFTOFF has the same core tokenomics, but may have different token 
quantities. See section “LIFT Tokenomics” for a sample. One important fact to note on the liquidity 
pools is 40% is in ETH/xxx and 19.91% is in LID/xxx, where xxx is the launched token. Since the LID for 
the LID/xxx pair is purchased from the raised ETH, and the ETH is distributed over 10 weeks, the 
LID/xxx liquidity pool is created and increased over 10 weeks. Gradually adding the LID/xxx liquidity 
has two major advantages: (1) Gradual liquidity prevents sudden increases in the LID price from 
purchases which may be exploited by bad actors, and (2) Gradual liquidity allows faster price 
movements when the token initially launches, meaning faster price discovery as the token reaches 
equilibrium. There is a drawback compared to Lid Simplified, the previous legacy platform. As LID/xxx 
pools are not created in the first week, fees from arbitration bots will not generate staking rewards 
during this typically high volume trading period.

Like all Lid Protocol projects, LIFTOFF is radically open source. All the smart contracts, 
deployment scripts, dapps, tooling, and tests are open source with a GPLv3 license. GPLv3 was chosen 
as a relatively permissive copyleft license, preventing Lid Protocol’s code being ever incorporated into 
proprietary software. Anyone forking Lid Protocol’s projects must be as radically open source as Lid 
Protocol is.

4. The XLOCK platform

The XLOCK platform, just like LIFTOFF, is fully decentralized with the same meaning of “fully 
decentralized” as given in the section “The LIFTOFF Platform.” The ENS site hosted on IPFS is available 
at xlock.eth, and all smart contracts are deployed onto Ethereum. Like LIFTOFF, the Lid Protocol team 
has the ability to update the dapp, point the ENS domain to new IPFS sites, and upgrade the XLOCK 
smart contracts excluding the XETH contract. The normal day-to-day operations of XLOCK do not 
require any effort by the Lid Protocol team, although periodically the xETH/ETH pool managed by the 
xethLiqManager contract must be updated as described in more detail at the end of this section.

XLOCK is an open, 0 fee platform that allows the creation of infinite liquidity on Uniswap. The 
technology is forked from uLock which was inspired by rootkit’s ERC-31337. Several upgrades were 
applied to this standard by uLock to allow the creation of arbitrary tokens against an xEth pool.

The infinite liquidity of XLOCK only exists in a single case; where 100% of tokens are locked as 
liquidity. In Liftoff’s case, less than 100% are locked as liquidity, so the liquidity bonus provided by 
XLOCK is limited to 10% of the total sale size.

For all Uniswap pairs, Uniswap uses an invariant I for tokens X and Y s.t. X*Y=I. For token 
contracts with a capped total supply, treading against an ETH pair, this means there is always some 

3



ETH remaining in the contract. This can be quite substantial, sometimes in the 1000’s of ETH. XLOCK 
takes this insight a step further, realizing that if 100% of a tokens liquidity is locked, 100% of the 
liquidity’s ETH is permanently locked. XLOCK thus uses a WETH fork, xETH, to create the pools 
unbacked. Since the locked xETH can never be redeemed, all circulating xETH is always backed 1:1 by 
ETH. More information is available on the xlock-react GitHub. The fundamental research is available in 
the Rootkit whitepaper.

In addition to creating free liquidity, XLOCK also creates an xETH/ETH pool on Uniswap using 
ETH available in the xETH contract. Since most of the ETH most of the time in the xETH contract is not 
accessed, a safe percentage of the ETH can be withdrawn to create an xETH/ETH liquidity pool as long 
as the UNI LP are held in a contract which will withdraw the LP and return the ETH to the xETH 
contract in case the backing ratio falls too low. As the implication of rebalancing the xETH/ETH pair on 
arbitration bots is still unknown, the xETH/ETH rebalancing currently requires an authorized member 
of the Lid Protocol Team to occasionally trigger the function. Once further research demonstrates the 
method can be safely made public, it will be available for anyone to call.

Just like LIFTOFF and all other Lid Protocol projects, XLOCK is radically open source. All the 
smart contracts, deployment scripts, dapps, tooling, and tests are open source under GPLv3 license.

5. LIFT Features

LIFT will start with Tier 1 requirements and rewards. Tier 1 will always have the best rewards – 
any future benefits will accrue to Tier 1 first. To apply to be a Tier 1 member, the applicant must hold 1
LIFT and verify their Ethereum address for whitelisting from their discord account. If a member’s 
account ever drops below 1 LIFT, you will lose your Tier 1 status and will need to reapply. 

Tier 1:
 Benefits:

◦ 3% airdrop from each Liftoff (10 weeks after sale)
◦ Private Liftoff discord channel access
◦ Vote on verification of Liftoff sales

 Requirements:
◦ Maintain balance of 1 LIFT.
◦ Good standing within LIFT community.
◦ Whitelist address with verification from Discord account.

Tier 2+:
 Tier 1’s current benefits will be given to all new tiers.
 Tier 1 will be the first to receive all new benefits.
 Tiers 2+ will have lower LIFT balance requirements.

 

4



4. LIFT Tokenomics

The LIFT tokenomics are designed to reward all current and future actors in both the Liftoff and
Lid ecosystems. LIFT will not supplant the LID token; rather, it complements LID by driving adoption of 
Liftoff. LID will remain the Liquidity token for Liftoff, and ~20% of each raise in ETH will be converted to
LID locked liquidity. All LIFTOFF launches will follow the same tokenomics, except with the addition of 
a 3% airdrop to eligible LIFT holders.

Token Allocations:
 2000 LIFT total supply
 1251 LIFT to ignitors
 749 LIFT to liquidity

Pricing details:
 Softcap: 100 eth
 Hardcap: 650 eth
 Price at hardcap: 1.92 LIFT/ETH
 If hardcap is not reached, excess tokens are distributed proportionately to buyers.

ETH allocations, as % of raise:
 59.91% liq
 5.09% fees
 30% LIFT buyback&burn
 10% Liftoff Partners (marketing)
 5% LIFT buy and airdrop to LID stakers at block number 11729000

5



Appendix A. LIFTOFF Contracts

The LIFTOFF platform is composed of 4 primary smart contracts: LiftoffSettings, LiftoffEngine, 
LiftoffInsurance, and Liftoff Registration. These interfaces and their methods are described in detail 
below. All Liftoff contracts have been audited by Halborn and are verified on Etherscan.

Deployed Addresses
Ropsten
LiftoffSettings:     0x71A442F174EA408f762624981c07Ca3F800Aa72E
LiftoffEngine:       0xF4CCd4483b393A0526FF939CF15E89eBd3958f2B
LiftoffInsurance:    0x4f250e2236457259BDac9f651f62e972Ce502Caa
LiftoffRegistration: 0xadd1539fb19e03eE66fd365a6F6Cad68b49f981C

Mainnet
LiftoffSettings:     0xF54d9fC14A006763C83d4e12B1BB5dFB02eA668c
LiftoffEngine:       0x22bCFca3E18B2e7f114e17245e50D9dBf8Bb5e47
LiftoffInsurance:    0x4013F4366beEccb04d2462b061b0C78499eE8FfD
LiftoffRegistration: 0xA4Bf30C2f474fB2ffa35dBF432142DEa08D6655E

Interface Documentation
LiftoffSettings
LiftoffSettings provides properties to be read by other Liftoff contracts. These can be set by a 
governance address only. All methods use a get/set pattern for their properties.
 
function setEthXLockBP(uint _val) external;
function getEthXLockBP() external view returns (uint);
The basis points of raise that will be locked through xLocker.
 
function setTokenUserBP(uint _val) external;
function getTokenUserBP() external view returns (uint);
The basis points of tokens bought from pool to be distributed as rewards.
 
function setLiftoffInsurance(address _val) external;
function getLiftoffInsurance() external view returns (address);
Address for the deployed LiftoffInsurance contract.
 
function setLiftoffLauncher(address _val) external;
function getLiftoffLauncher() external view returns (address);
Address for the deployed LiftoffLauncher contract.
 
function setLiftoffEngine(address _val) external;
function getLiftoffEngine() external view returns (address);
Address for the deployed LiftoffEngine contract.

6



 
function setXEth(address _val) external;
function getXEth() external view returns (address);
Address for the deployed xEth contract.
 
function setXLocker(address _val) external;
function getXLocker() external view returns (address);
Address for the deployed xLocker contract.
 
function setUniswapRouter(address _val) external;
function getUniswapRouter() external view returns (address);
Address for the deployed Uniswapv2Router02 contract. 
0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D 
 
function setInsurancePeriod(uint _val) external;
function getInsurancePeriod() external view returns (uint);
Time period for 1 Insurance Cycle. Usually 7 days.
 
function setLidTreasury(address _val) external;
function getLidTreasury() external view returns (address);
Address for the Lid Treasury for receiving fees.
 
function setLidPoolManager(address _val) external;
function getLidPoolManager() external view returns (address);
Address for the Lid Pool Manager for making Lid/xxx pools.
 
function setXethBP(
    uint _baseFeeBP,
    uint _ethBuyBP,
    uint _projectDevBP,
    uint _mainFeeBP,
    uint _lidPoolBP
) external;
function getBaseFeeBP() external view returns (uint);
function getEthBuyBP() external view returns (uint);
function getProjectDevBP() external view returns (uint);
function getMainFeeBP() external view returns (uint);
function getLidPoolBP() external view returns (uint);
BaseFeeBP lid fee is basis points of sale charged even when a sale refunds. EthBuyBP is basis points of 
sale to purchase xxx from uniswap. ProjectDevBP is basis points of sale granted to dev. MainFeeBP is 
basis points of sale to Lid Treasury. Lid Pool BP is basis points of sale to purchase Lid for Lid/xxx pools. 
Sum must be 10000 basis points. ProjectDevBP, MainFeeBP, LidPoolBP, are distributed to their 
respective recipients over 10 insurance periods discounted by redeemed xxx tokens.
  
LiftoffRegistration

7



LiftoffRegistration is the entry point for project devs who wish to launch on Liftoff. It registers 
references to offchain data, and calls the LiftoffEngine.
 
function registerProject(
    string calldata ipfsProjectJsonHash,
    string calldata ipfsProjectLogoHash,
    string calldata ipfsProjectOpenGraphHash,
    uint launchTime,
    uint softCap,
    uint hardCap,
    uint totalSupplyWad,
    string calldata name,
    string calldata symbol
  ) external;
Requires that the launchTime is within the window set by minLaunchTime and maxLaunchTime. 
Requires the total token supply is below an upper limit of 1 trillion. Calls liftoffEngine.launchToken. 
Stores the ipfsHash of offchain data at tokenIpfsHash[tokenId] where tokenId is returned by 
launchToken, the index of the token in order of registration.
 
function setSoftCapTimer(uint _seconds) public;
softCapTimer is the amount of time that the project must reach softcap or be refunded.
 
function setLaunchTimeWindow(uint _min, uint _max) public;
Time window, in seconds from present, within which the launch time must be set.
 
function setLiftoffEngine(ILiftoffEngine _liftoffEngine) public;
Address of the LiftoffEngine.

LiftoffEngine
LiftoffEngine is the core of Liftoff. It follows the TokenSale from launch until it enters either refund or 
insurance. 
 
struct TokenSale {
    uint startTime;
    uint endTime;
    uint softCap;
    uint hardCap;
    uint totalIgnited;
    uint totalSupply;
    uint rewardSupply;
    address projectDev;
    address deployed;
    bool isSparked;
    string name;
    string symbol;
    mapping(address => Ignitor) ignitors;
8



}
Data structure for TokenSales. startTime: block time at which sale starts. endTime: block time at which
sale ends, unless hardcap is reach first. softCap: minimum totalIgnited to reach before endTime or the 
TokenSale refunds. hardCap: maximum totalIgnited, when hit ends the token sale. totalSupply: total 
tokensupply. rewardSupply: quantity of tokens available to claim by Ignitors. projectDev: address 
which will receive the project dev xEth. deployed: address at which the token sale is deployed by 
xLocker. isSparked: true once spark is called for the token sale. name: Name of the token, consumed 
by xLocker. symbol: Symbol of the token, consumed by xLocker. ignitors: all ignitors which ignited eth 
for the TokenSale.
 
struct Ignitor {
    uint ignited;
    bool hasClaimed;
    bool hasRefunded;
}
Data structure for Ignitors. ignited: amount of xEth ignited by the Ignitor. hasClaimed: whether the 
Ignitor has claimed their rewards. hasRefunded: whether the Ignitore has claimed their refund if the 
token sale failed to reach softCap.
 
function launchToken(
    uint _startTime,
    uint _endTime,
    uint _softCap,
    uint _hardCap,
    uint _totalSupply,
    string calldata _name,
    string calldata _symbol,
    address _projectDev
) external returns (uint tokenId);
Creates a new TokenSale. Can only be called by LiftoffRegistration. Assigned a sequential nonce 
tokenId from totalTokenSales. Passed values correlate to their associated values in the TokenSale 
struct. Stores the TokenSale in uint[] public tokens.
 
function igniteEth(uint _tokenSaleId) external payable;
Same as function ignite() but converts ignited eth to xEth, and refunds eth in excess of hardcap as eth.
 
function ignite(uint _tokenSaleId, address _for, uint _amountXEth) external;
Ignites xEth from msg.sender. Refunds xEth in exccess of the hardCap for the TokenSale from 
tokens[_tokenSaleId]. Adds ignited xEth to the Ignitor at address _for. msg.sender must have approved
the LiftoffEngine contract to spend xEth at least for _amountXEth. Can only be run when the 
TokenSale is igniting. Calculates the amount to ignite with getAmountToIgnite(), then transfers the 
amount returned from the sender and ignites it, adding the amount to the Ignitor and TokenSale.
 
function claimReward(uint _tokenSaleId, address _for) external;
Claims TokenSale rewards for Ignitor from the TokenSale at tokens[_tokenSaleId] and the Ignitor at 
TokenSale.ignitors[_for]. Can only be run after a TokenSale has been sparked. May only be run once 
9



per Ignitor, with the ignitor.hasClaimed check. Must set this value to true, to prevent multiple claims. 
Transfers reward, returned by getReward(), to _for.
 
function spark(uint _tokenSaleId) external;
Sparks the TokenSale. Deploys the token using xLocker, allocates tokens, and registers insurance. Can 
only be called if isSparkReady is true. Must set tokenSale.isSparked to true, to prevent multiple sparks 
for one sale. _deployViaXLock calculates the xEthLocked value to launch an ERC20 token via xLocker, 
then immediately buys xEthBuy amount of tokens, finally saving the deployed address to the 
TokenSale and returns the xEthBuy amount. _allocateTokensPostDeploy sets the rewardSupply of the 
tokenSale. _insuranceRegistration registers the TokenSale with insurance, sends the xEth remaining 
after the uniswap buy to the insurance, and sends the remaining tokens after the rewardSupply to the 
insurance contract. The Insurance contract is responsible for all distributions except the rewardSupply.
 
function claimRefund(uint _tokenSaleId, address payable _for) external;
Sends the refund available for _for at the TokenSale to _for. Can only run when isRefunding is true. 
Can only run when ignitor.hasRefunded, and must set this to true to prevent multiple refunds for the 
same account. Transfers ignited xEth back to the ignitor.
 
function getTokenSale(uint _tokenSaleId) external view returns (
    uint startTime,
    uint endTime,
    uint softCap,
    uint hardCap,
    uint totalIgnited,
    uint totalSupply,
    uint rewardSupply,
    address projectDev,
    address deployed,
    bool isSparked
);
Returns the values of TokenSale stored at tokens[_tokenSaleId]
 
function getTokenSaleForInsurance(uint _tokenSaleId) external view returns (
    uint totalIgnited,
    uint rewardSupply,
    address projectDev,
    address deployed
);
Returns the values of TokenSale needed by LiftoffInsurance stored at tokens[_tokenSaleId]
 
function isSparkReady(
    uint endTime,
    uint totalIgnited,
    uint hardCap,
    uint softCap,
    bool isSparked
10



) external view returns (bool);
Checks if TokenSale is available to spark. Always false if isSparked is true. Otherwise, only true if one of
the following is true:
    totalIgnited is greater or equal to the softCap AND the current block time is past the endTime,
    totalIgnited is greater than or equal to the hardCap.
 
function isIgniting(
    uint startTime,
    uint endTime,
    uint totalIgnited,
    uint hardCap
) external view returns (bool);
Checks if TokenSale is currently igniting. Only true if one of the following is true:
    The block time is within the startTime to endTime window,
    totalIgnited is equal to or greater than the hardcap.
 
function isRefunding(
    uint endTime,
    uint softCap,
    uint totalIgnited
) external view returns (bool);
Checks if the TokenSale is current refunding. Ony true if both (1) totalIgnited is below the softcap AND 
(2) now is passed the endTime.
 
function getReward(
    uint ignited,
    uint rewardSupply,
    uint totalIgnited
) external pure returns (uint reward);
Calculates the amount of reward that would be available given an amount ignited, a rewardSupply, 
and the totalIgnited in the TokenSale.
 
LiftoffInsurance
LiftoffInsurance does 2 tasks: (1) allows users to redeem tokens for eth at the original price minus the 
BaseFee (2) distributes tokens and xEth to Lid addresses and the token project dev.
 
struct TokenInsurance {
    uint startTime;
    uint totalIgnited;
    uint tokensPerEthWad;
    uint baseXEth;
    uint baseTokenLidPool;
    uint redeemedXEth;
    uint claimedXEth;
    uint claimedTokenLidPool;
    address deployed;
11



    address projectDev;
    bool isUnwound;
    bool hasBaseFeeClaimed;
}
Data structure for insurance. startTime: Time the first insurance cycle started. totalIgnited: see 
TokenSale.totalIgnited. tokensPerEthWad: price in tokens per eth times 10^18 that the TokenSale 
originally launched at. baseXEth: amount insured at 100% for the first week. baseTokenLidPool: Tokens
allocated for the Lid/xxx pool. redeemedXEth: total xEth redeemed for insurance. claimedXEth: total 
claimed xEth. claimedTokenLidPool: total claimed tokens for the Lid/xxx pool. deployed: ERC20 
deployed address of the token. projectDev: token's project dev, to receive project dev share of xEth 
every period. isUnwound: triggers unwind of insurance, where insurance sells all tokens onto market 
for full refunding. hasBaseFeeClaimed: true once the base fee, which is on all sales, is triggered.
 
function register(uint _tokenSaleId) external;
Registers the TokenSale from LiftoffEngine as insured. Sets tokenIsRegistered[tokenSaleId] to true. 
Must be run before createInsurance. Can only be called by LiftoffEngine.
 
function redeem(uint _tokenSaleId, uint _amount) external;
Gives xEth at initial presale rate to sender for tokens. Insurance  must be first initialized. Redeemer 
must first approve _amount of tokens. If the redeem causes the insurance to excess the baseXEth, 
reverts if after first period. Otherwise, triggers unwind and sells all token held by contract on uniswap. 
If so, must set tokenInsurance.isUnwound to true.
 
function claim(uint _tokenSaleId) external;
Distributes xEth and tokens to Lid and project dev. Only callable once per period (7 days). Insurance 
must be initialized, and must not have been unwound. Claims the baseFee if it has not been claimed, 
and if so only claims the baseFee and no other distributions. Remaining distributions can only be done
after the first period.
 
function createInsurance(uint _tokenSaleId) external;
Creates the TokenInsurance. Callable by anyone. Can only be called once. Must be called after 
regsiter(_tokenSaleId) for the same id. Fetches TokenSale data with 
liftoffEngine.getTokenSaleForInsurance. Stores TokenInsurance at tokenInsurances[_tokenSaleId]

12


	1. Overview
	2. Background
	​ Deployed Addresses
	​ Interface Documentation


